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Abstract—Sparse representation-based image super-resolution
is a well-studied topic; however, a general sparse framework
that can utilize both internal and external dependencies remains
unexplored. In this paper, we propose a group-structured sparse
representation approach to make full use of both internal
and external dependencies to facilitate image super-resolution.
External compensated correlated information is introduced by
a two-stage retrieval and refinement. First, in the global stage,
the content-based features are exploited to select correlated
external images. Then, in the local stage, the patch similarity,
measured by the combination of content and high-frequency patch
features, is utilized to refine the selected external data. To better
learn priors from the compensated external data based on the
distribution of the internal data and further complement their
advantages, nonlocal redundancy is incorporated into the sparse
representation model to form a group sparsity framework based
on an adaptive structured dictionary. Our proposed adaptive
structured dictionary consists of two parts: one trained on internal
data and the other trained on compensated external data. Both
are organized in a cluster-based form. To provide the desired over-
completeness property, when sparsely coding a given LR patch,
the proposed structured dictionary is generated dynamically by
combining several of the nearest internal and external orthogonal
subdictionaries to the patch instead of selecting only the nearest
one as in previous methods. Extensive experiments on image
super-resolution validate the effectiveness and state-of-the-art
performance of the proposed method. Additional experiments on
contaminated and uncorrelated external data also demonstrate its
superior robustness.

Index Terms—External method, internal method, retrieval
compensation, super-resolution, structured sparsity.

I. INTRODUCTION

IMAGE super-resolution (SR) aims to recover a high reso-
lution (HR) image from one or more low resolution (LR)
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images. The quality degradations inherent to image acquisition,
saving, and storage causes LR images to lose high frequency
detail, which leads to image SR recovery being an ill-posed
problem. To solve this problem, a priori knowledge is imposed.
Thus, one important issue of image SR is to constrain SR re-
covery with proper priors.

Since 1984 [1], studies on image super-resolution have been
investigated sequentially. Single image SR can be classified
into three categories: interpolation-based, reconstruction-based
and example learning-based. Interpolation-based methods [2],
[3] utilize the correlation between pixels to construct a pre-
diction function to estimate the missing pixels. Reconstruction-
based methods adopt a maximum a posteriori probability (MAP)
framework in which various regularization terms are imposed
as prior knowledge to describe some desirable properties of
natural images to constrain the solution of the ill-posed SR
recovery problem. Typical regularization terms include gradi-
ent [4], [5], nonlocal [6]–[8] and total variation (TV) [9], [10].
For both interpolation-based and reconstruction-based meth-
ods, prior knowledge is typically achieved in a rather fixed or
heuristic way. Thus, it is insufficient to represent the diversified
patterns of natural images.

Example-based methods learn the mappings between LR and
HR image patches from large training sets. Given an LR patch,
its corresponding HR patch is estimated based on these learned
mappings. In these methods, prior knowledge is dynamically
learned rather than provided heuristically. Thus, the modeling
capacity of example-based methods depends largely on the train-
ing data source. There are usually two kinds of training data
sources: the LR data and external images, further dividing the
example-based methods into two subclasses: internal and exter-
nal SR methods.

Internal SR methods [7], [11]–[15] learn priors from a train-
ing set cropped from the LR image itself. Based on the self-
similarity property (that some salient features repeat across
different scales within an image), the coupled LR/HR patches
extracted from a hierarchical pyramid of LR images provide
an effective prior for building the inverse recovery mapping.
In [14], a fast single image super-resolution method combines
self-example learning and sparse representation by replacing
the exact SVD and l1 norm with K-SVD and l0 norm to achieve
rapid self-learning. In [7], nonlocal similarity, one important
kind of self-similarity, is incorporated into the sparse represen-
tation model to constrain and improve the estimation of sparse
coefficients. To add more diversified and abundant patterns to
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the internal dictionary, Huang et al. [16] proposed to expand
the internal patch search space by localizing planes with de-
tected perspective geometry variations in the LR image. In these
methods, the patch priors are selected and learned from the LR
images; thus they are good at reconstructing the repeated pat-
terns in the LR image. However, the internal patch priors fail
to cover the diversified patterns of natural images and are poor
at reconstructing the distinct patterns. Moreover, the degraded
LR image loses high-frequency details, limiting the modeling
capacity of internal priors.

In contrast to the internal methods, external methods present
complementary and desirable properties. These methods utilize
the general redundancy among natural images and learn the LR-
HR mappings from large training datasets containing represen-
tative coupled external patches from an external dataset. Some
external SR methods apply the learned priors to SR estima-
tion directly, without any online auxiliary adaptation, thus they
are categorized into fixed external methods, including neigh-
bor embedding [17]–[19], kernel ridge regression [20], factor
graph [21], kernel PCA [22], locality-constrained representa-
tion [23], coupled dictionary [24]–[27] and the recently pro-
posed deep learning [28], [29]. Compared with the internal
methods, when the training set containing a variety of refer-
ence images, the priors extracted are more representative and
general. However, the fixed prior may not succeed in modeling
some image patterns because of the limited numbers of model
parameters and training images.

Another branch of methods - adaptive external methods ad-
just the learned prior based on the information in LR images, to
make the external prior more adaptive. In [30], the patch prior
is modeled as a flexible deformation flow rather than a fixed
vector. These deformable patches are more similar to the given
LR patch in the LR feature space. Thus, HR patches estimated
based on the fusion of these deformable patches present more
similar HR features. However, image degradation can make the
LR information ambiguous; thus, the deformation estimated in
the LR feature space may be imprecise. Rather than adjusting
the dictionary or the training set to the LR image, some works
perform online compensation, which selects and imports corre-
lated external information to update the training set and models.
In [31], an Internet-scale scene matching performs searches for
ideal example textures to constrain image upsampling. In [32],
with the help of a database containing HR/LR image segment
pairs, high-resolution pixels are ”hallucinated” from their textu-
rally similar segments. These two works focus on hallucinating
visually pleasant texture regions in large-scale enlargements
rather than on restoring the ground truth details. In [33], the
semantic information from parsing is used to choose the corre-
sponding anchor points adaptively to benefit anchor regression-
based image SR. In [34], Yue et al. proposed a cloud-based
landmark SR method that searches for similar patches in regis-
tered and aligned correlated images and utilizes these patches
to compensate the lost HR details. In this method, the refer-
enced correlated images play an important role in predicting
the details lost in the degradation. When the correlated images
are similar, such as adjacent frames of a video or images of the
same landmark or object with slight viewpoint differences, the
reconstruction is highly accurate. However, when the reference

images are dissimilar, the performance of the reconstruction
drops significantly.

Due to the obvious strengths and weaknesses of these two
kinds of priors, as well as their strong complementary proper-
ties, recent works have attempted to utilize both internal and
external priors for image denoising and image SR. In [35],
[36], the advantages of internal and external denoising meth-
ods are measured; then, these two kinds of methods are com-
bined by balancing the error between noise-fitting and signal-
fitting. In [37], Burger et al. proposed a learning method to
adaptively combine internal and external denoising results. Tim-
ofte et al. [38] explored seven ways to benefit image SR, one
of which is to create an internal dictionary containing internal
anchor points for further joint anchor regression with the ex-
ternal dictionary. Wang et al. [39] proposed a joint SR method
to adaptively fuse the results of sparse coding for external ex-
amples and those of epitomic matching for internal examples.
This fusion is implemented via an adaptive balance between the
reconstruction performance based on the internal and external
priors. However, the joint weighting fails to delve deeper into
the interdependency of internal and external priors at the model
level, such as organizing external data based on the structure
of internal data. Thus, some complementary advantages of in-
ternal and external models are still unexplored. Moreover, the
fixed external training set leads to an inconsistency between the
distributions of internal and external data; thus, the method with
only external priors may generate a biased reconstruction re-
sult. In essence, an ideal framework that makes full use of both
internal and external data should fulfill four conditions:

1) The interdependence between external and introduced in-
ternal data should be depicted, and the complementary
properties of external and internal models should be char-
acterized.

2) The introduced external data should be adjusted based on
the characteristics of the LR image to guarantee consis-
tency between the distributions of the internal and external
data.

3) When introducing external data, the model should be ro-
bust to degradation and uncorrelated data.

4) To make dynamically introduced external data convenient,
the model should be trainable in real time, allowing adap-
tive retraining with updated external data.

Considering these properties, in this paper, we propose a
group sparse representation model to introduce both internal
and external data for image super-resolution. The contributions
of our paper are as follows:

1) To the best of our knowledge, this study is the first at-
tempt to introduce, organize and exploit external data in a
unified sparse representation model based on the content
and the structure of internal LR data. Empirical evaluations
demonstrate the effectiveness of our proposed method as
well as its robustness to basic degradations and uncorre-
lated data.

2) A group-structured sparse representation model with com-
pensated external priors is proposed. The nonlocal redun-
dancy is incorporated into the sparse representation model
based on an over-complete dictionary generated dynami-
cally from both introduced external data and internal data.
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3) A two-stage similarity refinement guarantees the similar-
ity between the LR images and the introduced external
information from searched images and further ensures the
positive effect of imported external data on image SR.

The rest of this paper is organized as follows. Section II
briefly reviews the sparse representation model. In Section III,
we introduce the proposed two-stage similar patch retrieval
approach to obtain refined external data. To utilize this useful
external information effectively, in Section IV, we propose a
group sparse coding based on an adaptive structured dictionary.
Section V explores a method to exploit both the internal and
searched external information to build an iterative integrated
framework to super-resolve images based on the group struc-
tured sparse representation model. We evaluate the effectiveness
of our proposed method through experiments in Section VI.
Finally, concluding remarks are given in Section VII.

II. OVERVIEW OF SPARSE REPRESENTATION

A. Sparse Coding

Sparse representation generalizes a signal transformation as
a decomposition based on a limited subset of basis functions or
signal atoms from a large over-complete dictionary. Formally,
let x be an image patch and Φ be an over-complete dictionary.
Let α be the coefficient that represents x sparsely over Φ. The
sparse representation model can be represented as

arg min
α

||x − Φα||22 + λ||α||p (1)

where the first term is the data fidelity term and the second term
is the sparsity prior. λ balances the importance of these two
terms. The choice of p determines the properties of the solution.
A value of p = 0 leads to an NP-hard problem solved by greedy
pursuit algorithms such as orthogonal matching pursuit (OMP),
whereas a value of p = 1 leads to a convex problem that can be
solved by the basis pursuit (BP) [40] and the FOCal Underde-
termined System Solver (FOCUSS) [41]. After α is acquired,
the estimation of x is obtained as follows:

x̂ = Φα. (2)

The sparsity prior helps in extracting the principal compo-
nents of image structures and in removing noises or insignif-
icant details from images. Because of its intrinsic robustness,
sparse representation is widely applied in various image restora-
tion applications [24], [42], [43]. However, in the traditional
sparse representation model, image patches are assumed to be
independent and uncorrelated; therefore, spatial correlations of
these patches are neglected.

Because natural images are highly structured, image patches
and their corresponding representation coefficients are corre-
lated. Similar patches in the spatial domain also present a strong
correlation among their sparse coefficients. To model this type of
structural property, structured sparse representation models [7],
[8], [44] introduce context information (i.e., the distribution of
similar patches) to depict the correlation of dictionary atoms
between patches, leading to a more effective model.

Nonlocal similarity reflects the fact that some salient struc-
tural regions such as edges and textures repeat within an image.
The group sparsity prior [45] collects nonlocal similar patches

into groups for sparse coding [7], [46]. It is usually formulated
as follows:

arg min
αg

||xg − Φαg ||2F + λ||αg ||0,∞ (3)

where xg is the patch group, and αg contains all the correspond-
ing sparse coefficients of patches in a group. || · ||0,∞ denotes the
number of nonzero rows in a matrix. By utilizing the strong cor-
relations of representation coefficients, group sparsity pursues
a stable and accurate sparse coding to mitigate the ambiguity
caused by the degradation process. However, this framework
is not computationally efficient due to the high complexity of
solving the || · ||0,∞ regularized problem.

In our work, we are interested in incorporating the group
sparsity prior into the sparse representation model to depict
the statistical dependencies between dictionary atoms in the
context of introducing both internal and external data. Our sparse
representation model is built on the patch group and regularized
by l0 norm. Further, to improve the computational efficiency, it
is solved by simultaneous orthogonal matching pursuit (SOMP)
[47], [48] to sparsely code the given patch group over a subset
of dictionary atoms rather than over the whole dictionary.

B. Dictionary Learning

In addition to sparse coding, dictionary learning is also a
fundamental part of sparse representation. In general, dictionar-
ies can be classified into several types: orthogonal dictionaries
(also called analytical dictionaries) (DCT and wavelet), over-
complete dictionaries [49] and structured dictionaries [7], [50],
[51]. Orthogonal dictionaries consist of the basis for their cor-
responding transforms. Over-complete dictionaries [24], [26],
[52]–[54] are learned based on a reconstructed performance of
a fixed training set. An over-complete dictionary is modeled
in the form of the sparse coding problem, but tries to jointly
optimize the representation coefficients and the dictionary

arg min
α,Φ

||x − Φα||2F + λ||α||p . (4)

Learned from natural images, these dictionaries increase their
local adaptiveness and modeling capacity. They provide redun-
dancy, a desirable property for image reconstruction. However,
their training phases are time-consuming. Therefore, it is im-
practical to frequently update these dictionaries to facilitate
real-time applications. Moreover, the structural regularity be-
tween atoms within the dictionary is ignored, and a universal
dictionary may not be adaptive for modeling some local image
regions.

Structured dictionaries [7], [50], [51] are constructed based
on patch clusters. First, the training patches are clustered and
then, sub-dictionaries are learned based on the patch clusters.
Sparse decomposition on one patch is carried out with the corre-
sponding sub-dictionary, making them highly adaptive to local
structures. The process of training these dictionaries is highly
efficient, which enables dynamic retraining using the LR im-
age before the SR reconstruction. However, in these methods,
sub-dictionaries are orthogonal, which limits their modeling ca-
pacity in describing complex natural image signals.
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Fig. 1. Flow diagram of the introduced two-stage similarity-measured external information and subsequent dictionary learning based on the refined external
similar patches and internal patches.

In our model, we try to combine the advantages of the over-
complete and structured dictionaries by considering both the
internal and external data. We train two structured dictionaries
with internal and adaptively selected external training images
and then use both dictionaries to jointly constrain the image
reconstruction.

III. TWO-STAGE SIMILARITY-MEASURED EXTERNAL

INFORMATION INTRODUCTION

External data usually provides useful compensated informa-
tion to reconstruct unrepeated patterns or structures of an image.
However, at the same time, it may also introduce noise or irrel-
evant data that can degrade the subsequent reconstruction. Im-
age degradation makes the LR-HR mappings ambiguous. Thus,
selecting external information based on only LR images may
be inaccurate. To avoid importing mismatched external data,
we exploit both content and patch information to jointly select
external information. Then, we propose a two-stage similarity
measurement to refine external information as shown in Fig. 1.
In the global stage, the external information is first selected and
refined based on content information. Then, in the local stage,
the similarities between patches are measured jointly by content
features and high frequency patch features.

A. Global-Stage Content-Based External Image Selection

Similar objects in some content consist of similar compo-
nents. These objects tend to share similar low or middle level
feature distributions such as skin colors of different people or
texture patterns of beaches at different locations. Thus, the se-
mantic and content information provides guidance when se-
lecting useful external data. This intuition motivates us to use
content-based image retrieval to search for correlated images
and extract global features to facilitate the further patch match-
ing. We first prepare an offline database containing various im-
ages. Then, before super-resolving an image, we use Google’s
search engine to obtain the first 10 similar images to an input LR
image. These recalled images are added to the online database
as a supplement to the offline database. We expect that this
online database enhancement helps to simulate a cloud envi-
ronment containing infinite images and ensures that our dataset
always contains the images with similar content as the input
LR. Note that Google’s returned results contain both correlated

and uncorrelated images; the correlated images provide useful
information for further image selection and patch refinement.

For the retrieval, the features of Searching Images with
MPEG-7-Powered Localized dEscriptors (SIMPLE) [55] is uti-
lized. As with the majority of other recent popular features, SIM-
PLE combines the advantages of both global and local methods.
It detects key points globally and forms features based on the
corresponding patches locally. First, for a given image X, a
SURF detector [56] is used to detect key points {Pi} in the im-
age, where i ∈ {1, 2, . . . , s} and s is the number of the detected
key points. Then, the local square region around Pi is defined as
the salient image patch Li . Thus, the input image X is mapped
into a series of salient image patches {Li}. Then, in each salient
patch Li , a color and edge directivity descriptor (CEDD) Ei

is extracted [57]. This is a 144-dimension vector that includes
color, edge and texture information and has low complexity
with high computational efficiency. Finally, the input image is
represented by a set of CEDD features {Ei}.

For indexing and retrieval, we use the BOW model [58]. All
CEDD features {Ei} are quantified into visual words {Eq

i }
through a local descriptor quantization. Then, we define the
whole word set W = {Wj}, where j ∈ {1, 2, . . . , t}, and t
is the number of words. W contains all the quantized CEDD
features. In the BOW model, an image is represented as the bag
of its visual words V = {(Wj , nj )}, where nj is the number
of the visual word Wj in the given image. Finally, the distance
between two images Xu and Xv is defined as follows:

d (Xu ,Xv ) =
t∑

j=1

(nu
j − nv

j )2 (5)

where nu
j and nv

j are the numbers of the j-th visual word in the
u-th and v-th image, respectively.

B. Local-Stage High-Frequency External Patch Matching

In the previous stage, we obtain images similar to the LR im-
age. From these images, which are similar in both content and
context, we further search for similar patches based on the con-
catenation of the global content feature and the high frequency
patches. We split these similar images into patches {pn}, where
n ∈ {1, 2, . . . , N}, and N is the number of patches. Similar to
the previous works [7], [24], the high frequency part of a patch



306 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 2, FEBRUARY 2017

ph
n is estimated by the difference of Gaussians (DoG) operator.

Then, a joint vector formed by concatenating the global stage
content feature Vu and the local stage high frequency patch
features ph

n is used to represent a patch. The content feature of
a patch is the SIMPLE feature of its corresponding image.

For indexing and retrieval, the KD-tree [59], an approximated
nearest neighbor matching algorithm, is used. The joint vectors
of all external patches are indexed. Then, the KD-tree searches
for the best dimension in the feature space of the data to subdi-
vide the reference dataset iteratively. This study used FLANN
[60], an advanced KD-tree technique, to retrieve similar patches.

Overall, we utilize content similarity to shrink the selection
range of external images in the global stage and search for
similarly referenced patches based on both content and high
frequency patch features in the local stage.

IV. GROUP STRUCTURED SPARSE REPRESENTATION

In this section, we construct a group structured sparse
representation model that utilizes the nonlocal redundancy to
constrain the sparse coding. Then, we illustrate our adaptive
structured dictionary, including its composition and training
algorithm. Note that the patches used for dictionary training
consist of both the internal patch set SI cropped from Y and
the correlated external patch set SE retrieved in Section III.

A. Group-Based Sparse Representation

Group-based sparse representation follows the patch repre-
sentation framework. Let X be the HR image and Y be the
LR image. {xk} and {yk} are overlapped patches cropped
from X and Y, where k indexes the locations of patches.
For a single patch xk , a group of nonlocal similar patches
xg

k = {xk,1 ,xk,2 , . . . ,xk,z} is collected based on the mean
square error (MSE) between patches, where z is the number
of similar patches in a group.

In general, the HR scene is degraded through blurring, down-
sampling and noise addition operators to generate LR observa-
tions as follows:

yk = DHxk + v (6)

where H is the blur kernel, D is a down-sampling operator and
v is the noise term. The traditional sparse representation models
xk as follows:

xk = Φαk (7)

where αk is the sparse coefficient that represents xk over Φ.
Then, the problem in (6) is converted to the problem of sparse
coding for yk with respect to Φ as follows:

α̂x = arg min
αk

{||yk − DHΦαk ||22 + λ||αk ||p
}

. (8)

The first term is the fidelity term, and the second term is the
sparsity-inducing term. λ is a weighting parameter that makes a
trade-off between the errors of these two terms.

Based on group sparsity, for a patch group yg
k and xg

k , we
construct a dynamic sub-dictionary Φk (elaborated upon in
Section IV-B) to represent xg

k . Meanwhile, we simplify the norm
constraint from l0,∞ in (3) into l0 norm. Then, (8) becomes the

following problem of group sparse coding:

α̂g
k = arg min

αg
k

{||yg
k − HDΦkαg

k ||22 + λ||αg
k ||p

}

= arg min
αk , m

{
z∑

m=1

||yk,m − HDΦkαk,m ||22

+
z∑

m=1

λ||αk,m ||p
}

where αg
k = [αk,1 , αk,2 , and . . . , αk,z ] are the sparse represen-

tation coefficients of xg
k , and Φk consists of a small subset of

atoms dynamically selected from Φ to represent xg
k . Equation

(9), with the adaptive generated Φk , forces the nonlocal simi-
lar patches to have the same sparse decomposition pattern, and
it can be solved by simultaneous orthogonal matching pursuit
(SOMP) with p = 0. In our model, the group sparsity is in the
form of the constraints in Section V. After obtaining the sparse
coefficients, HR patches are reconstructed based on these co-
efficients and their corresponding dictionaries. Then, the entire
image X is represented in the spatial domain by weighting the
reconstructed patches.

B. Adaptive Structured Dictionary Learning

One important aspect of the sparse representation model is
the dictionary D. The analytical dictionaries such as DCT and
wavelet are hand-crafted and orthogonal. The representation
and reconstruction based on these dictionaries is equal to their
corresponding transforms. They are compact but may fail to
characterize some of the complex natural image signals. In con-
trast, learned dictionaries select a basis signal set to represent the
image signal by measuring the reconstruction performance on
a natural image training set. They are generally over-complete
and their redundancy boosts the performance in depicting the
complex image signals. However, their coding and reconstruc-
tion are usually related to the l0 or l1 optimization, which is
unstable and time-consuming.

For our approach, we designed a stable and time-efficient
over-complete dictionary—the adaptive structured dictionary—
for sparse coding and image reconstruction in Section V. This
approach forms an over-complete dictionary by combining sev-
eral orthogonal sub-dictionaries that are trained based on the
patch clusters sampled from a given image set. In sparse cod-
ing, several sub-dictionaries nearest to the given LR patch are
chosen to form an over-complete dictionary. The entire process
is shown in Fig. 2.

The patches used for the dictionary training are cropped
from the LR image pyramid or from external images. Over-
smooth patches are discarded using the condition var (pi) < c,
where var(·) is the variance and c is the given threshold.
Then, we acquire a training set T = {p1 ,p2 , . . . ,pM } where
M is the number of patches in T. To obtain meaningful fea-
tures, we extract the high-frequency versions of these patches
Th =

{
ph

1 ,ph
2 , . . . ,ph

M

}
using the difference of Gaussians

(DoG) operator. The k-means algorithm is applied to divide
Th into K partitions {Th

1 ,Th
2 , ...,Th

K }.
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Fig. 2. Group-structured dictionary learning and online dictionary generation process in GSSR.

The traditional dictionary learning problem is modeled in
the form of sparse coding in (8), which regards the dictionary
as a variable to be estimated. However, it is time-consuming
to directly solve it. For efficiency, we obtain the dictionary by
applying the efficient PCA transformation to each patch cluster.
For each cluster, let Ωk be the covariance matrix of the k-th
partition Th

k . By applying the PCA to Ωk , we get an orthogonal
transform Fk in which the representation coefficients are Zk =
FT

k Th
k . To make the model more compact and general, only

parts of the eigenvectors are used to form Fk . Thus, we limit
the number of eigenvectors under a given threshold r. Let Fk,r

and αr be the transform matrix and representation coefficients
with this limit, respectively. The proper r is then chosen as the
optimal number of the eigenvectors involved in each cluster by
solving the following optimization problem:

r̂ = arg min
r

{||Th
k − Fk,rαr ||2F + λ||αr ||1

}
(9)

where || · ||F is the Frobenius norm.
To reconstruct a patch xk or a group xg

k , we select several sub-
dictionaries to obtain an adaptive over-complete dictionary. Let
μi represent the centroid of patch cluster i, and let xh

k /xh
k,1 rep-

resent the high frequency parts of xk/xk,1 . The sub-dictionaries
are selected based on the distances between xh

k /xh
k,1 and μi . The

distance dik
/dik , 1 is defined as follows:

dik
= ||xh

k − μi ||2 or dik , 1 = ||xh
k,1 − μi ||2 . (10)

Those sub-dictionaries Φi whose corresponding cluster Ci

includes the smallest distances to xh
k /xh

k,1 are used to construct
the over-complete dictionary by Φo

Φo = [Φk1 ,Φk2 , ...,ΦkV
] (11)

where kj indicates that the center of the dictionaryΦkj
is the j-th

closest to xk/xk1 , and V is the number of the sub-dictionary
in forming the adaptive structured dictionary.

V. SUPER-RESOLUTION BASED ON GSSR WITH INTERNAL

AND EXTERNAL DATA

In this section, we utilize both internal and searched external
data to build an integrated iterative framework to super-resolve
images. Our framework is based on an optimization function

with two parts: the fused patch priors and the sparsity constraint.
Given a patch xk , the entire optimization is as follows:

arg min
xk ,αg

k

Epatch(xk ) + λ0Esparse(xk , αg
k ). (12)

The first term exploits the internal nonlocal similar patches
and external HR patches to form a constraint on the estimation
of xk . The second term incorporates both external and internal
dictionary priors into the optimization function. Finally, λ0 bal-
ances the importance of these two terms in the reconstruction.

A. Fused Patch Estimation with Nonlocal Mean and External
Coupled Patches

The image degradation leads to a loss of high frequency de-
tails. We aim to build a simple inference approach from LR
space to HR space. For the internal method, the nonlocal mean
(NLM) is an effective tool for mapping the LR patches to the cor-
responding HR patches. By assuming that the patterns of image
patches are usually non-locally correlated, NLM methods obtain
a better HR image estimation by replacing every pixel with a
weighted average of its neighborhood. For the external method,
many techniques such as kernel regression [61] or neighbor em-
bedding [17] can be used. These techniques utilize the external
coupled patches to build the mapping from LR patches to HR
patches. For simplicity, we use a generalized NLM to acquire
a high-frequency detail estimation with the internal nonlocal
patches and the general external coupled patches. Therefore,
Epatch(·) is designed as a combination of the internal NLM and
the external generalized NLM:

Epatch(xk ) = ||xk −
∑

i

wI
k,ix

I
k,i ||22 + ||Hxk

−
∑

j

wE
k,jHxE

k,j ||22

wI
k,i =

1
W1

exp
{−||xk − xI

k,i ||22/h1
}

wE
k,j =

1
W2

exp
{−||xk − xE

k,j ||22/h2
}

(13)
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where {xI
k,i} and {xE

k,j} are similar patches searched and ex-
tracted from the pyramids of the LR image and external im-
ages, respectively, where i ∈ {1, 2, ..., t1} and j ∈ {1, 2, ..., t2}.
Here, t1 and t2 are the numbers of the internal similar patches
and external similar patches, respectively. H is the high-
pass filter that extracts the high frequency part from a given
patch. The values W1 =

∑t1
i=1 exp{−||xk − xI

k,i ||22/h1} and

W2 =
∑t2

j=1 exp{−||xk − xE
k,j ||22/h2} are normalization fac-

tors, while h1 and h2 are pre-determined scalars. Intuitively,
the reconstructed xk is expected to be close to the combination
of

∑
i wI

k,ix
I
k,i and (HT H)−1HT

∑
j wE

k,jHxE
k,j . In (13), the

first term is used to generate more salient repeated features in
the image and to preserve the general geometric properties of
natural images. The second term imports more abundant high
frequency details from external patches.

B. Sparsity Constraint With Internal and External
Dictionaries

When introducing more high frequency detail, some noise and
uncorrelated data may be introduced as well, causing additional
visual degradation. To depress these artifacts and preserve the
intrinsic geometric structures, we incorporate the GSSR con-
straint described in Section IV into the optimization function.
For the dictionary prior, we use a concatenation of the inter-
nal and external dictionaries as the dictionary. The combination
both strengthens their advantages and inhibits their individual
weaknesses. This process can be written as follows:

Φk = [ΦE ,k ,ΦI ,k ] (14)

where ΦE ,k and ΦI ,k are the external and internal dictionaries,
respectively. Then, the corresponding group spare coefficients
can be represented as

αg
k =

[
αg

E ,k , αg
I ,k

]T

. (15)

Then, (9) becomes

Esparse (xk , αg
k ) = ||yg

k − HD(Φkαg
k )||2F + λ||αg

k ||0
= ||yg

k − HD(ΦE ,kαg
E ,k + ΦI ,kαg

I ,k )||2F
+ λ||αg

E ,k ||0 + λ||αg
I ,k ||0 . (16)

To adjust the preference given to the internal and external
priors, we split the λ into two separated parameters: λ1 , λ2 .
Then, (16) becomes

Esparse(xk , αg
k ) = ||yg

k − HD(ΦE ,kαg
E ,k + ΦI ,kαg

I ,k )||2F
+ λ2 ||αg

E ,k ||0 + λ1 ||αg
I ,k ||0 . (17)

Because the internal dictionary is considered to be good at
reconstructing some salient repeated patches within the given
image, we give priority to the internal dictionary. Thus, we can
rewrite (17) as follows:

Esparse(xk , αg
k ) =

{
||yg

k − HDΦI ,kαg
I ,k ||2F + λ1 ||αg

I ,k ||0

+ ||(yg
k − HDΦI ,kαg

I ,k ) − HDΦE ,kαg
E ,k ||2F + λ2 ||αg

E ,k ||0
}
.

(18)

This reconstructs yg
k with the internal dictionary first. Then,

the external dictionary is utilized to rebuild the residual part,
which is considered as a general pattern and therefore cannot be
characterized by the internal dictionary prior.

C. Algorithm

We propose an alternating minimization method to solve (12).
We split (12), turning it into several sub-problems by consider-
ing some variables as cyclically fixed.

1) αg
I Problem: By fixing xk and αg

E , we obtain the follow-
ing minimization problem:

arg min
αg

I , k

||yg
k − HDΦI ,kαg

I ,k ||2F + λ1 ||αg
I ,k ||0 . (19)

This is a problem of simultaneous orthogonal matching pur-
suit (SOMP) [47], [48]. When the group structure is fixed and
the norm || · ||0,∞ is converted to the norm || · ||0 , we can solve
it using SPAMS1 software.

2) αg
E Problem: By fixing xk and αg

I , we obtain a sub-
problem concerning αg

E :

arg min
αg

E , k

||(yg
k − HDΦI ,kαg

I ,k ) − HDΦE ,kαg
E ,k ||2F

+ λ1 ||αg
E ,k ||0 . (20)

The problem in (20) can be solved in a similar way as (19).
3) x Problem: Finally, with αg fixed, xk can be solved sim-

ply as a weighted least squares (WLS) problem:

arg min
xk

||xk −
∑

j

wI
k,jx

I
k,j ||22 + ||Hxk −

∑

j

wE
k,jHxE

k,j ||22

+ λ0 ||xk − ΦI ,kα1
I ,k − ΦE ,kα1

E ,k ||22 (21)

where α1
I ,k and α1

E ,k are the sparse coefficients of the
first patch in the patch group equal to the current patch.
Let wI

k = [wI
k,1 , w

I
k,2 , ..., w

I
k,t1

], xI
k = [xI

k,1 ,x
I
k,2 , ...,x

I
k,t1

],
wE

k = [wE
k,1 , w

E
k,2 , ..., w

E
k,t2

], xE
k = [xE

k,1 ,x
E
k,2 , ...,x

E
k,t2

]. The
problem in (21) can be reduced to

arg min
xk

||xk − wI
k (xI

k )T ||22 + ||Hxk − wE
k H(xE

k )T ||22
+ λ0 ||xk − ΦI ,kα1

I ,k − ΦE ,kα1
E ,k ||22 (22)

which has a closed form solution

xk =
[
(λ0 + 1)I + HT H]−1

·
[
wI

k (xI
k )T + HT wE

k H(xE
k )T

+ λ0ΦI ,kα1
I ,k + λ0ΦE ,kα1

E ,k

]
.

(23)

Then, the estimated HR image X is reconstructed by

x̂ =

(
l∑

k=1

RT
k Rk

)−1 l∑

k=1

RT
k xk . (24)

1“SPAMS: A sparse modeling software,” [Online]. Available: http://spams-
devel.gforge.inria.fr/
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D. Method Summary

We can summarize the solution of our model as an integrated,
iterative SR framework (Fig. 3) that consists of two stages: patch
enhancement and group sparse reconstruction. In the patch en-
hancement stage, both internal and external similar patches are
fused to generate an HR estimation. Then, the given estimation
is reconstructed by group sparse reconstruction based on both
internal and external dictionary priors.

VI. EXPERIMENTAL RESULTS

A. Experimental Setting

We built an image database by combining the PASCAL VOC
Challenge 2012 dataset and web images retrieved from the In-
ternet. The retrieved images come from the results returned by
the Google image search engine in a manner similar to actual
online updating. For each LR image, we added 100 similar
images found on the web. Consequently, our database con-
tains more than 19,000 images depicting various topics and
a wide range of content types. In our tests, we selected the top
five recalled images as the correlated images for each test LR
image in the content image retrieval process. A typical example
of the recalled images is shown in Fig. 4.

To verify the effectiveness of the introduction of the pro-
posed two-stage similarity-measured external information and
the group structured sparse representation for SR, we conducted
extensive experiments on image enlargements. The basic param-
eter settings were as follows: 5 external similar patches were
added to the training set for every LR patch; the patch size was
7 × 7; the overlap width was equal to 4; the number of clusters
in the internal dictionary was KI = 256; the number of clus-
ters in the external dictionary was KE = 1024; the group size
was z = 5; and the adaptive generated over-complete dictionary
contains 3 internal clusters and 3 external clusters. Other param-
eters are as follows: h1 = h2 = 75, t1 = t2 = 10, λ1 = λ2 = 7
and λ0 = 1.

We conducted both qualitative and quantitative evaluations on
our method, comparing it with the Bicubic interpolation method,
ScSR [24], BPJDL [27], ASDS [62], NCSR [7], Landmark [63],
SRCNN [28], ANR [18], A+ [19], SelfEx [16] and JSR [39].
The results of JSR and Landmark are provided by the author.2

To make accurate comparisons possible, the source code for the
compared methods was kindly provided by their authors. We
followed the simulated image degradation process described
in [7], [62], in which LR images are generated by a blurring
and down-sampling operator. The blurring is performed with a
7 × 7 Gaussian kernel whose standard deviation is 1.6. Similar
to previous works, the image SR methods are applied only to
the luminance component, while the chromatic components are
enlarged by the Bicubic interpolation. To evaluate the quality
of the SR results, the Peak Signal-to-Noise Ratio (PSNR) and
the perceptual quality metric Structural SIMilarity (SSIM) were
calculated.

2The input LR images were provided following the degradation process in
this paper.

For SRCNN, ANR and A+, we retrained their network or
dictionaries with our degradation setting and kept other config-
uration same as shown in original papers. The training set of SR-
CNN, created in [28], contained 91 images. They were cropped
into 33 × 33 input and 21 × 21 output patches. These images
were decomposed into around 15,000 sub-images using a stride
of 21. SRCNN was trained on Caffe platform [64] via stochastic
gradient descent (SGD) with standard back-propagation. We set
the momentum as 0.9, the learning rate as a fixed value 10−4 for
front-end layers and 10−5 for the penultimate layer during the
training. We allowed at most 5 × 107 backpropagations, namely
2.2 × 105 epochs, which spent about three days on a single GPU
– GTX 780Ti. We did not allow a larger number of backprop-
agations as reported in [28] because we did not observe further
performance gain. For ANR and A+, we used the standard set-
ting illustrated in [18] and [19] with 5 million training samples
of LR and HR patches from the same training images in [28],
a dictionary size of 1024, and a neighborhood size of 2048
training samples for A+ and 40 atoms for ANR, respectively.
The training process of ANR and A+ cost about 10 to 15 min,
which was much faster than SRCNN. ScSR, BPJDL, Landmark
and SelfEx cannot perform enlargement and deblurring simul-
taneously; thus, an iterative back-projection was carried out for
deblurring before the SR—the same as the preprocessing per-
formed in [7]. The number of deconvolution iterations was set
to obtain the best average PSNR result for each method.

B. Objective Evaluation

Tables I and II lists the image SR results of our method and
the five comparison methods using scaling factors of 3 and 2,
respectively. Our method outperformed the other SR methods
for the majority of test images. In the 3× enlargement, our
method achieved the best SR performance with averages of
26.68 dB (PSNR) and 0.8252 (SSIM) over the 12 test images,
constituting an improvement of 0.29 dB in PSNR and 0.0081
in SSIM over the average results (26.39 dB and 0.8171) of
the second best method, NCSR [7]. Our method also achieved
the best SR performance in the 2× enlargement with averages
of 29.29 dB (PSNR) and 0.8868 (SSIM). Here, the gain over
NCSR is 0.32 dB in PSNR and 0.0039 in SSIM. Four state-of-
the-art methods, ANR, A+, SelfEx and SRCNN did not perform
well in our experimental setting due to the heavy blurring. In a
heavily blurred condition, the ambiguity between LR and HR
spaces is enlarged and direct mapping methods such as similar
patch fusion [63] and dictionary-based reconstruction [18], [24],
degrade considerably.

C. Subjective Evaluation

Fig. 5 demonstrates the super-resolution 2× results on Leaves.
Fig. 6 shows the 3× results on Butterfly. As shown in these
figures, the Bicubic interpolation generates blurred results. The
ScSR method preserves the majority of edges, although there is
still a little blurring around them. The ASDS method generates
more natural edges and textures, but finds it difficult to avoid
blurring and artifacts (e.g., the stem in Leaves). Because the
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Fig. 3. Flow chart of the proposed super-resolution algorithm, including the iterative SR framework with patch enhancement based on both internal and external
similar patches and the group sparse reconstruction based on the structured dictionary.

Fig. 4. Illustrations of the content images retrieved. For example, for Car, seven recalled images include only six similar images.

Fig. 5. Visual comparisons between different algorithms for the image Leaves (2×). (a) High-res. (b) Bicubic. (c) SRCNN. (d) ANR. (e) Landmark. (f) ASDS.
(g) NCSR. (h) Proposed.

ASDS method is based on uncorrelated external images only,
its sparse coding, which does not consider the consistency of the
representation coefficients, is unstable. The NCSR recovers key
structures such as the textures in Butterfly. However, it still intro-
duces some blurring and slight (but noticeable) artifacts around

the edges. This problem becomes more obvious for images
with insufficient self-similarity. In the general case, the Land-
mark method cannot align the searched reference image with
the input LR image, thus it degrades to a simple patch match-
ing and fusion operation, leading to noise and artifacts in the
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TABLE I
PSNR (DB) AND SSIM RESULTS IN 3× ENLARGEMENT

Method Bicubic ScSR BPJDL Landmark SRCNN SelfEX

Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baboon 20.80 0.3547 21.50 0.4714 21.02 0.4234 21.02 0.4125 21.66 0.4924 21.10 0.4199
Bike 20.80 0.5759 23.36 0.7400 21.91 0.6680 21.68 0.6679 24.21 0.7736 21.02 0.6577
Butterfly 20.78 0.7175 25.14 0.8543 22.70 0.7887 21.92 0.7925 26.52 0.8664 22.64 0.7541
Car 24.66 0.7557 28.03 0.8595 26.17 0.8126 25.06 0.7902 28.64 0.8655 24.52 0.8036
Field 23.01 0.6248 24.57 0.7072 23.45 0.6662 23.25 0.6390 24.88 0.7134 23.95 0.6748
Comic 20.87 0.5573 23.53 0.7371 21.92 0.6607 21.59 0.6455 24.29 0.7684 21.58 0.6254
Foreman 26.48 0.8491 30.34 0.9151 28.07 0.8831 27.72 0.8820 29.87 0.9295 28.48 0.8666
Hat 27.20 0.7778 29.86 0.8449 28.10 0.8132 27.89 0.7946 30.50 0.8515 28.55 0.8267
Leaves 19.83 0.6411 24.40 0.8482 21.27 0.7523 19.21 0.6543 26.06 0.8754 21.37 0.7599
Lena 26.91 0.7660 30.73 0.8563 28.49 0.8133 27.46 0.7999 31.51 0.8675 28.70 0.8007
Text 10.80 0.4786 12.82 0.7000 11.66 0.6259 10.09 0.3840 13.44 0.7275 12.03 0.5913
Zebra 20.43 0.5398 24.14 0.7264 21.49 0.6390 20.88 0.6233 25.10 0.7566 21.04 0.7565
Average 21.88 0.6365 24.87 0.7717 23.02 0.7122 22.31 0.6738 25.56 0.7906 22.92 0.7114
Gain * * 2.99 0.1541 1.14 0.0757 0.43 0.0373 3.68 0.1541 1.03 0.0749
Method JSR ANR A+ ASDS NCSR Proposed

Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baboon 20.96 0.4401 21.53 0.4684 21.61 0.4850 21.75 0.5042 21.75 0.5068 21.76 0.5069
Bike 20.70 0.6405 23.45 0.6593 24.18 0.6716 24.66 0.7983 24.72 0.8027 25.02 0.8137
Butterfly 20.74 0.7742 25.12 0.8547 26.44 0.8989 27.29 0.9034 28.08 0.9157 28.87 0.9296
Car 23.54 0.7596 28.11 0.8622 28.56 0.8826 29.36 0.8882 29.42 0.8915 29.65 0.8928
Field 21.45 0.6424 24.62 0.7091 25.05 0.7321 25.28 0.7368 25.40 0.7413 25.56 0.7390
Comic 20.46 0.6302 23.57 0.7374 24.02 0.7653 24.60 0.7869 24.65 0.7908 24.85 0.8012
Foreman 23.78 0.8767 30.74 0.9182 28.48 0.9330 31.72 0.9332 32.10 0.9358 32.21 0.9381
Hat 26.43 0.8100 29.88 0.8463 30.78 0.8671 30.97 0.8650 31.27 0.8705 31.60 0.8775
Leaves 19.17 0.7105 24.35 0.8458 25.32 0.8897 26.76 0.9066 27.43 0.9215 28.26 0.9381
Lena 25.68 0.7865 30.82 0.8603 31.59 0.8763 32.05 0.8806 32.25 0.8844 32.27 0.8839
Text 11.22 0.5527 12.79 0.6824 13.19 0.7264 11.55 0.5975 14.08 0.7718 14.57 0.8119
Zebra 21.07 0.6196 24.39 0.7310 24.97 0.7517 25.31 0.7656 25.52 0.7722 25.80 0.7750
Average 21.27 0.6869 24.95 0.7646 25.35 0.7900 25.94 0.7972 26.39 0.8171 26.70 0.8256
Gain −0.61 0.05 3.07 0.1281 3.47 0.1534 4.06 0.1607 4.51 0.1806 4.82 0.1891

Fig. 6. Visual comparisons between different algorithms for the image Butterfly (3×). (a) High-res. (b) Bicubic. (c) SRCNN. (d) A+ . (e) Landmark. (f) ASDS.
(g) NCSR. (h) Proposed.
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TABLE II
PSNR (DB) AND SSIM RESULTS IN 2× ENLARGEMENT

Method Bicubic ScSR BPJDL Landmark SRCNN SelfEX

Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baboon 21.23 0.4036 21.92 0.5357 21.54 0.5118 21.91 0.5364 22.18 0.5598 21.07 0.5037
Bike 21.90 0.6478 24.15 0.7899 23.22 0.7645 24.38 0.8041 23.45 0.7246 23.84 0.7631
Butterfly 22.42 0.7802 26.13 0.8792 24.51 0.8568 25.60 0.8822 29.48 0.9231 24.48 0.8430
Car 26.30 0.8122 29.60 0.8979 27.84 0.8768 28.32 0.8865 31.85 0.9249 27.84 0.8661
Field 23.87 0.6661 25.27 0.7525 24.39 0.7316 25.13 0.7427 26.47 0.7829 24.89 0.7444
Comic 22.15 0.6415 24.60 0.8023 23.35 0.7691 24.58 0.8092 26.50 0.8551 23.86 0.7656
Foreman 28.21 0.8805 31.26 0.9256 29.33 0.9144 30.60 0.9219 32.32 0.9382 29.99 0.9120
Hat 28.30 0.8081 30.50 0.8648 29.19 0.8536 30.41 0.8599 32.30 0.8850 29.25 0.8644
Leaves 21.62 0.7378 25.84 0.8902 23.36 0.8518 22.44 0.8333 29.76 0.9438 23.05 0.8676
Lena 28.63 0.8121 31.46 0.8799 29.74 0.8600 30.69 0.8744 33.12 0.8991 29.28 0.8698
Text 11.74 0.5719 14.37 0.7917 13.38 0.7584 12.23 0.6261 15.64 0.8476 13.01 0.7680
Zebra 22.01 0.6288 25.70 0.7980 23.50 0.7564 24.50 0.7920 28.05 0.8404 23.97 0.7496
Average 23.20 0.6992 25.90 0.8173 24.44 0.7921 25.07 0.7974 27.59 0.8437 24.54 0.7931
Gain * * 2.70 0.1181 1.24 0.0929 1.87 0.0982 4.39 0.1445 1.35 0.0939
Method JSR ANR A+ ASDS NCSR Proposed

Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baboon 23.43 0.6927 21.97 0.5321 22.08 0.5414 22.46 0.5906 22.48 0.5894 22.54 0.6020
Bike 24.25 0.8306 24.75 0.8137 25.55 0.8400 27.03 0.8749 27.12 0.8781 27.56 0.8884
Butterfly 24.99 0.8935 27.02 0.9031 28.49 0.9323 29.62 0.9370 30.71 0.9480 31.28 0.9523
Car 25.79 0.8493 29.86 0.9091 30.35 0.9216 32.28 0.9359 32.47 0.9390 32.78 0.9384
Field 23.85 0.8239 25.56 0.7656 26.01 0.7821 27.02 0.8143 27.21 0.8149 27.37 0.8205
Comic 23.49 0.8071 25.11 0.8166 25.61 0.8352 27.24 0.8796 27.25 0.8806 27.58 0.8910
Foreman 25.66 0.9370 31.57 0.9411 32.12 0.9498 33.62 0.9463 34.01 0.9510 33.97 0.9489
Hat 28.86 0.8987 31.21 0.8807 32.01 0.8940 32.85 0.9010 33.05 0.9044 33.41 0.9075
Leaves 22.96 0.8822 26.63 0.9100 27.81 0.9375 30.24 0.9543 31.18 0.9635 31.73 0.9674
Lena 29.18 0.9008 32.15 0.8931 32.92 0.9041 33.74 0.9121 33.83 0.9132 34.02 0.9121
Text 14.38 0.7767 14.63 0.7952 14.99 0.8221 12.16 0.6035 19.70 0.9488 20.13 0.9428
Zebra 23.89 0.7822 26.22 0.8113 26.81 0.8238 28.40 0.8604 28.65 0.8637 29.14 0.8706
Average 24.23 0.8396 26.39 0.8310 27.06 0.8487 28.06 0.8508 28.97 0.8829 29.29 0.8868
Gain 1.03 0.1403 3.19 0.1317 3.86 0.1494 4.86 0.1516 5.77 0.1837 6.09 0.1876

reconstructed results. The SRCNN and ANR methods generate
results containing obvious artifacts because they lack the ability
to deal with the blurring and tend to enlarge the invisible arti-
facts generated by the deconvolution operator. In comparison,
due to the combination of self-similarity and external similar-
ity and by considering the cluster properties during dictionary
training, our method preserves the edges better and generates
more natural textures. More subjective results are presented in
the supplementary material.

D. Ablation Analysis

To provide a closer look at the detailed performance of our
method, we performed objective evaluations for several differ-
ent versions of our method. We notate every version with an
abbreviation. NCSR denotes the version that uses only internal
information reconstructed by traditional sparse coding. IEF is
based on both internal and fixed external data and reconstructed
by traditional sparse coding. IEC is based on both internal and
correlated external data and reconstructed by traditional sparse
coding. IECG is based on both internal and correlated external
data and reconstructed by group sparse coding. ICGP is based
on only internal data and reconstructed by group sparse coding
and fused patch priors. IECGP denotes a version based on the
internal and correlated external data by group sparse coding and

TABLE III
PSNR (DB) RESULTS OF DIFFERENT VERSIONS OF

THE PROPOSED METHOD IN 3× ENLARGEMENT

Method NCSR IEF IEC IECG ICGP ECGP IECGP

Bike 24.72 24.82 24.83 24.83 24.79 24.06 25.00
Butterfly 28.08 28.34 28.47 28.52 28.50 26.57 28.83
Car 29.42 29.49 29.61 29.67 29.59 28.70 29.63
Comic 24.72 24.71 24.72 24.74 24.73 24.26 24.85
Field 25.40 25.55 25.56 25.54 25.56 25.08 25.57
Foreman 32.08 32.05 32.16 32.24 32.20 30.99 32.23
Hat 31.27 31.34 31.40 31.49 31.45 30.85 31.59
Leaves 27.43 27.76 27.87 27.84 27.81 24.64 28.29
Lena 32.25 32.28 32.32 32.37 32.40 31.61 32.34
Baboon 21.75 21.75 21.75 21.75 21.75 21.72 21.75
Text 14.08 14.64 14.25 14.31 14.26 13.48 14.52
Zebra 25.52 25.64 25.68 25.60 25.63 24.72 25.80
Average 26.39 26.53 26.55 26.58 26.56 25.56 26.70

fused patch priors. Table III lists the PSNR results of our method
in these different versions. The results show that the introduc-
tion of the external information, correlated external information,
group sparsity constraints and fused patch priors improve the re-
construction performance in a step-by-step fashion. Moreover,
the comparisons between the performances of ICGP, ECGP and
IECGP indicate the strength of the combination of the external
and internal data rather than the use of any single type.
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TABLE IV
PSNR (DB) RESULTS OF THE PROPOSED METHOD WITH REFERENCES IN DIFFERENT NOISE LEVELS IN 3× ENLARGEMENT

Noise Level Bike Butterfly Car Comic Field Foreman Hat Leaves Lena Baboon Text Zebra

0 25.01 28.83 29.65 24.86 25.57 32.10 31.60 28.28 32.31 21.75 14.54 25.81
20 24.99 28.81 29.58 24.85 25.56 32.16 31.58 28.31 32.36 21.75 14.54 25.83
50 24.99 28.74 29.58 24.84 25.61 32.17 31.56 28.28 32.32 21.75 14.53 25.83
100 24.99 28.82 29.64 24.84 25.62 32.18 31.58 28.28 32.32 21.75 14.54 25.82
150 24.99 28.81 29.62 24.84 25.59 32.16 31.59 28.28 32.33 21.75 14.54 25.81
200 24.98 28.82 29.62 24.84 25.60 32.16 31.55 28.28 32.37 21.75 14.56 25.81
300 24.94 28.80 29.54 24.84 25.59 32.05 31.51 28.24 32.27 21.75 14.53 25.81
Pure noise (100) 24.85 28.60 29.44 24.80 25.50 31.97 31.50 28.17 32.22 21.82 14.44 25.68
VAR(10−4 ) 26 60 47 3 14 55 14 18 23 6 13 24

E. Robustness of GSSR

To evaluate the robustness of our method, we tested its perfor-
mance by introducing correlated but low-quality data, degrading
the reference images used for training the external dictionaries
with different noise levels. We also used a fixed, high-quality
patch set to form the fused patch priors rather than sampling
them from a noisy external patch set. We employed this strategy
because we expect only the group sparse representation model
to be robust to noises and regard the patch enhancement as being
sensitive to image degradations. The results in Table IV indicate
that the performance variance is negligibly small, meaning that
the group sparse representation model is relatively insensitive
to the quality of the introduced external images.

In fact, noisy external images seem to have almost no im-
pact on the overall performance primarily for three reasons.
First, when the external referenced images contain noise, the
LR patch is far away from the centers of most external dictio-
naries/clusters, the sparse reconstruction of a patch tends to use
internal sub-dictionaries to form the online dictionary instead
of external sub-dictionaries. This explains why increasing the
noise level in external images has little effect on the SR perfor-
mance. Second, the external dictionaries trained from external
referenced images with additive zero mean noises could at least
contain some atoms that are able to describe high frequency
details. Their existence enables the sparse representation using
both internal and external dictionaries to preserve more struc-
tural details within a patch than an approach that uses only inter-
nal dictionaries. This explains why the external sub-dictionaries
trained from noisy external referenced images still benefit the
final SR result.

More surprisingly, it is observed from Table IV that, for one
sample, e.g. Baboon, inputting random noise as the external
images leads to a performance gain. We give a simple expla-
nation here. The dictionary used in our paper aims to constrain
the reconstruction to suppress the artifacts from other steps, in-
stead of creating the correspondence between the LR and HR
spaces. The original PCA dictionaries may be over-constrained
and lead to removing irregular texture details. Then, when we
relax the constraint to a certain extent even in a random way by
providing sub-dictionaries learned from external noisy images,
some irregular texture details, from internal nonlocal patches
and external similar patches collected from a rather large fixed
high-quality image pool, are better preserved.

F. Super-Resolving Noisy Images

We also further tested a more challenging problem—
super-resolving noisy images. The difficulty stems from the
contradictory requirement that noise must be removed while the
structural details of LR images, such as edges or textures, must
be enhanced. Any inappropriate operations may enhance the
noise or tend to reduce details. The objective evaluation results
on super-resolving noisy images are shown in Table V. Our
proposed method is more robust and still achieves consistently
better performance than A+ and SRCNN in such challenging
cases. As the noise level was increased from 3 to 7, the
performance gap between the proposed method and two other
methods widens from 1.41 dB (A+) and 0.29 dB (SRCNN) to
3.22 dB (A+) and 1.14 dB (SRCNN) in terms of PSNR.

G. Complexity Analysis

To evaluate the computational cost of the proposed method,
we compared the running times of different methods on 12 im-
ages rescaled to 256 × 256 pixel on the 2 × image enlargement
task. We calculated the average running time of our proposed
method and five representative methods for these test images
using MATLAB 2014a running on a computer with an Intel
(R) Core (TM) i5-3230@2.60 GHz and a 64-bit Windows 7
operating system. The global-stage content-based external im-
age selection was implemented with Lire (See note 1), which
searches for similar images within 2 s. The local-stage high-
frequency external patch matching was implemented based on
the FLANN, which achieves fast patch retrieval and costs at most
34 s to search similar patches based on the joint vector. In all,
the image search step introduces little additional computational
burden. Group sparse coding does involve some computational
penalty compared with previous sparse coding methods. The
average computational time for an image enlargement (includ-
ing the group sparse coding and non-local means) is illustrated
in Table VI. As shown, our proposed approach improves SR
performance at a cost of approximately 3 times the running cost
of NCSR. The sparse representation methods (ScSR, ASDS,
NCSR and the proposed method) are slower than A+ and SR-
CNN in the SR reconstruction phase because the framework of
sparse representation is less efficient than anchor regression or
CNN forward propagation. However, these two methods carry
large burdens when training dictionaries, making it difficult for
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TABLE V
PSNR (DB) AND SSIM RESULTS WHEN SUPER-RESOLVING NOISE IMAGES IN 3× ENLARGEMENT

Noise Level Method A+ SRCNN Proposed Method A+ SRCNN Proposed

Image PSNR SSIM PSNR SSIM PSNR SSIM Image PSNR SSIM PSNR SSIM PSNR SSIM

3 Bike 23.56 0.7110 24.35 0.7619 24.37 0.7715 Hat 28.52 0.6792 30.07 0.7718 30.41 0.8143
5 22.72 0.6349 23.84 0.7177 24.10 0.7507 26.18 0.5239 28.71 0.6593 29.73 0.7827
7 21.59 0.5572 23.23 0.6579 23.73 0.7274 24.16 0.4123 27.20 0.5481 28.74 0.7456
3 Butterfly 25.45 0.8020 27.33 0.8587 27.55 0.8877 Leaves 24.57 0.8288 25.91 0.8764 26.99 0.9017
5 24.13 0.7047 26.48 0.7927 27.23 0.8748 23.40 0.7569 25.25 0.8306 26.64 0.8895
7 22.72 0.6268 23.23 0.6579 26.56 0.8621 22.22 0.6909 24.39 0.7822 26.00 0.8752
3 Car 27.20 0.7322 28.57 0.8202 28.88 0.8465 Lena 29.09 0.7211 30.87 0.8006 31.03 0.8289
5 25.35 0.5864 27.59 0.7247 28.54 0.8235 26.54 0.5751 27.36 0.7252 30.48 0.7965
7 23.58 0.4666 26.36 0.6248 28.10 0.7989 24.31 0.4576 27.64 0.6025 29.24 0.7668
3 Comic 23.43 0.7020 24.24 0.7533 24.36 0.7659 Baboon 21.28 0.4378 21.59 0.4829 21.59 0.4796
5 22.60 0.6287 23.80 0.7082 24.00 0.7421 20.71 0.3820 21.35 0.4508 21.42 0.4527
7 21.51 0.5546 23.15 0.6538 23.57 0.7172 20.08 0.3348 21.03 0.4172 21.27 0.4289
3 Field 24.37 0.5947 25.11 0.6798 25.16 0.7020 Text 13.15 0.6915 14.31 0.7807 13.76 0.6871
5 23.32 0.4746 24.64 0.5948 25.03 0.6814 13.10 0.6562 14.26 0.7572 14.01 0.6866
7 22.09 0.3782 23.98 0.5096 24.75 0.6599 13.01 0.6137 14.22 0.7296 13.90 0.6754
3 Foreman 28.55 0.7500 29.29 0.8404 31.03 0.8838 Zebra 24.28 0.6861 25.18 0.7420 25.14 0.7388
5 26.24 0.5924 28.14 0.7249 30.58 0.8589 23.24 0.6066 24.65 0.6977 25.01 0.7133
7 24.14 0.4648 26.85 0.6153 29.58 0.8424 21.99 0.5305 22.86 0.6421 24.61 0.6867
3 Average 24.45 0.6947 25.57 0.7641 25.86 0.7757
5 23.13 0.5935 24.67 0.6987 25.56 0.7544
7 21.78 0.5073 23.86 0.6257 25.00 0.7322

TABLE VI
AVERAGE RUNNING TIME OF DIFFERENT METHODS

Method ScSR ASDS NCSR

Dict. Training hours 49.16 s 68.20 s
SR Reconstruction 183s 156.14 s 278.18 s
Method A+ SRCNN Proposed
Dict. Training 1281.76 s days 180.37 s
SR Reconstruction 1.61 s 12.33 s 658.23 s

them to acquire external information adaptively from online
training data for use in their dictionaries.

There are some potential ways that our method can be ac-
celerated. First, our method (and the other comparison meth-
ods for the image reconstruction) were all implemented with
MATLAB. The speed of all these methods could be improved
by implementing them in C++. In fact, our method could bene-
fit further from pre-training some external sub-dictionaries and
processing every image patch group in parallel. Second, some
recent works [65], [66] have implemented sparse coding with a
time-efficient learned feed-forward network. Implementing our
proposed algorithm based on this learned framework might be
a good choice to reduce the running time.

VII. CONCLUSION AND DISCUSSION

This paper presented a group structured sparse representation
model that employs both external and internal similarities for
image SR. Externally compensated correlated information is in-
troduced by a two-stage retrieval and refinement process. The
content features in the global stage and the high frequency patch
features in the local stage are jointly used to improve the selec-
tion process and refine the external information. The nonlocal
redundancy is incorporated into the sparse representation model
to form a group sparsity framework on an adaptively generated

over-complete dictionary. This model is computationally highly
efficient and thus convenient for absorbing external information
dynamically. Based on the two-stage external information selec-
tion and the structured group sparse representation model, we
exploit both the internal and retrieved external information to
build an iterative integrated framework to super-resolve images.
Experimental results demonstrate the superiority of our pro-
posed method in using the complementary advantages of both
the internal and external priors compared with state-of-the-art
methods. It is interesting to observe that random noises may
benefit learning a more expressive dictionary in some cases.
This also motivates us to revisit the structured dictionary, in-
cluding its advantages, drawbacks and potential capacities, in
our future work.
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